top of page

Random Forest and Ada Boost Algorithm Implementation Using Tic-tac-toe Dataset

realcode4you

Import Necessary Packages

import pandas as pd
import numpy as np

Load Dataset

df = pd.read_csv("Q1_training-tic-tac-toe.data/tic-tac-toe.data.txt")
df

Output:












Data Preprocessing

from sklearn.preprocessing import LabelEncoder

labelencoder = LabelEncoder()

df['x'] = labelencoder.fit_transform(df['x'])

df['x']


output:














df['x.1'] = labelencoder.fit_transform(df['x.1'])
df['x.3'] = labelencoder.fit_transform(df['x.3'])
df['x.4'] = labelencoder.fit_transform(df['x.4'])
df['o'] = labelencoder.fit_transform(df['o'])
df['o.1'] = labelencoder.fit_transform(df['o.1'])
df['o.2'] = labelencoder.fit_transform(df['o.2'])
df['o.3'] = labelencoder.fit_transform(df['o.3'])
df['positive'] = labelencoder.fit_transform(df['positive'])
df



X = df.iloc[:, 0:9].values

y = df.iloc[:, 9].values


from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)


from sklearn.preprocessing import StandardScaler

feature_scaler = StandardScaler()

X_train = feature_scaler.fit_transform(X_train)

X_test = feature_scaler.transform(X_test)


2. Create a Random Forest Model (random_state = 0) using k- Cross-Validation Technique


from sklearn.ensemble import RandomForestClassifier

classifier = RandomForestClassifier(n_estimators=100, random_state=0)


from sklearn.model_selection import cross_val_score

all_accuracies = cross_val_score(estimator=classifier, X=X_train, y=y_train, cv=5)

all_accuracies


output:

array([0.91034483, 0.92307692, 0.9020979 , 0.93006993, 0.98601399])
Accuracy = all_accuracies[4]
Accuracy = round(Accuracy, 2)

3. Apply Ada Boost algorithm to improve the accuracy score (random_state = 0).


from sklearn.ensemble import AdaBoostClassifier
from sklearn import metrics
abc = AdaBoostClassifier(n_estimators=50,
                         learning_rate=1, random_state = 0)
# Train Adaboost Classifer
model = abc.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

output:

Accuracy: 0.7708333333333334
Accuracy_Adaboost = metrics.accuracy_score(y_test, y_pred)
Accuracy_Adaboost = round(Accuracy_Adaboost, 2)
list_of_result_values = []
list_of_result_values.append(Accuracy)
list_of_result_values.append(Accuracy_Adaboost)
list_of_result_values

output:

[0.99, 0.77]

In [78]:


Save Result into csv file

file = open('./output/output.csv','a+')
file.write("Question1 Output" +"\n")
file.write(str(list_of_result_values) +"\n")
file.close()


Comments


REALCODE4YOU

Realcode4you is the one of the best website where you can get all computer science and mathematics related help, we are offering python project help, java project help, Machine learning project help, and other programming language help i.e., C, C++, Data Structure, PHP, ReactJs, NodeJs, React Native and also providing all databases related help.

Hire Us to get Instant help from realcode4you expert with an affordable price.

USEFUL LINKS

Discount

ADDRESS

Noida, Sector 63, India 201301

Follows Us!

  • Facebook
  • Twitter
  • Instagram
  • LinkedIn

OUR CLIENTS BELONGS TO

  • india
  • australia
  • canada
  • hong-kong
  • ireland
  • jordan
  • malaysia
  • new-zealand
  • oman
  • qatar
  • saudi-arabia
  • singapore
  • south-africa
  • uae
  • uk
  • usa

© 2023 IT Services provided by Realcode4you.com

bottom of page