top of page
realcode4you

Fake News Detection In Machine Learning


Import Libraries

from keras.models import Sequential
import pandas as pd
import numpy as np
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense, Flatten, LSTM, Conv1D, MaxPooling1D, Dropout, Activation
from keras.layers.embeddings import Embedding
from keras.preprocessing.text import text_to_word_sequence


Mount Drive


from google.colab import drive
drive.mount('/content/drive')

Read Data Path

loc = '/content/drive/My Drive/fake/'

Read Dataset

# loading the a train set
tr = pd.read_csv(loc+'train.csv')
tr.dropna(inplace=True)
tr.head()

output:


Loading Test Data


#loading the test set
ts = pd.read_csv(loc+'test.csv')
ts.dropna(inplace=True)
ts.head()

Ouput:


Length of both dataset:

len(tr),len(ts)

(18285, 4575)


# using only 3000 record  to reduce memory usage , increase the numbers below to increase the data.
tr = tr.iloc[:2000,:]
ts = ts.iloc[:1000,:]
tr.label.value_counts()
len(tr)
# cleaning data
tr.replace(r'\b\w{1,3}\b','', regex =True, inplace = True)neuralNetwork.fit(emb, y_tr, epochs=1)
tr.replace(r'\b\w{1,3}\b','', regex =True, inplace = True)
tr.head()

Output:



Get complete solution of this? Send your details at:



Comments


bottom of page