top of page

Case Study Assignment Help In Data Mining

Requirement Details

An organization wanted to check association among employee experience, skills, traits etc. to better manage human resources.


As a data scientist, you are required to recognize patterns from the available data and evaluate efficacy of methods to obtain patterns. Your activities should include - performing various activities pertaining to the data such as, preparing the dataset for analysis; investigating the relationships in the data set with visualization; identify frequent patterns; formulate association rules and evaluate quality of rules.


Demonstrate KDD process with following activities:

  • Problem statement

  • ·Perform exploratory data analysis

  • Preprocess the data

  • Propose parameters such as support, confidence etc.

  • Discover frequent patterns

  • Iterate previous steps by varying parameters

  • Formulate association rules

  • Compare association rules

  • Briefly explain importance of discovered rules


Following are some points for you to take note of, while doing the assignment:

  • The data in some of the rows in the data set may be noisy

  • Some of the attributes have large number of values – you can consider merging them into 2 or 3 values to simplify the solution

  • State all your assumptions clearly

  • Provide clear explanations to explain your stand


Solution:

Import Libraries

#import libraires
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
from sklearn.metrics import mean_absolute_error, make_scorer
import sklearn.metrics as metrics
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import seaborn as sns
import itertools 
import numpy as np
import matplotlib.pyplot as plt

Read Data

#Read Dataset
df_train = pd.read_csv("Employee_skills_traits.csv")
df_train

Output:


Replace column attribute space

#Replace Column attribute space with '-'
df_train.columns = df_train.columns.str.replace(' ','_')

Now Check columns

#Show all dataset Columns
df_train.columns

Output:

Index(['ID', 'Employment_period_', 'Time_in_current_department_', 'Gender_',
       'Team_leader_', 'Age_', 'Member_of_professional_organizations_',
       '.Net_', 'SQL_Server_', 'HTML_CSS_Java_Script_', 'PHP_mySQL_',
       'Fast_working', 'Awards', 'Communicative_'],
      dtype='object')

Check Data After Rename Attribute

df_train


Here we see that all column name are renames and space is removed(Here we do this steps because space raise issue to read columns)



Checking Dataset Null Values

#Checking Null Value
#Visualize for check null value
check_null_value = df_train.isnull()
sns.heatmap(check_null_value,yticklabels=False,cbar=False,cmap='viridis')

Output:














As per above heat map we can say that it has no null value.



Checking Shape of dataset

#– the shape of the dataset
df_train.shape

Output:

(998, 14)

Dataset has 998 rows and 14 columns



Checking Data Type

#– info of the dataset
df_train.info()

Output:














Summary of the dataset

#– summary of the dataset
df_train.describe()

Output:



Finding Features and target variable and Split dataset


#Devided dataset into with target attribute "Awards"
x=df_train.drop(['Awards'],axis=1)
target=df_train.Awards
#split dataset with 25 percent test sample
X_train, X_test, y_train, y_test = train_test_split(x, target, test_size=0.25, random_state=0)

Use K means Clustering Algorithm And Fit into Model

#Use Data mining Clustering and Find the Mean Square Error
kmeans = KMeans(n_clusters=2) 
kmeans.fit(X_train, y_train)
y_pred = kmeans.predict(X_test)
test_mae = mean_absolute_error(y_test, y_pred)
print('Validation MAE: %0.3f' % test_mae)

Output:

Validation MAE: 0.548

Accuracy

#Find Accuracy of Model
score = metrics.accuracy_score(y_test,y_pred)
print('Accuracy: %0.2f' % score)

Output:

Accuracy: 0.45


Fine Tune the Model To increase the accuracy

#Use Data mining Clustering and Find the Mean Square Error
#Fine Tune The Model to minimize the MSE and increase Accuracy
kmeans = KMeans(n_clusters=2, init='k-means++', n_init=5, max_iter=100, tol=0.0001) 
kmeans.fit(X_train, y_train)
y_pred = kmeans.predict(X_test)
test_mae = mean_absolute_error(y_test, y_pred)
print('Validation MAE: %0.3f' % test_mae)

Output:

Validation MAE: 0.452

Accuracy

#Find Accuracy of Model
#Find Accuracy After Fine tune Parameter
score = metrics.accuracy_score(y_test,y_pred)
print('Accuracy: %0.2f' % score)

Here we have see increase the model Accuracy when we have tune the model using extra K means parameters



Plot the Confusion Matrix

#Evaluation of Model - Confusion Matrix Plot

def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    print(cm)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.tight_layout()


# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)

# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=['0','1'],
                      title='Confusion matrix, without normalization')

Output:













Find Recall And Precision

#Find Recall and Precision
cnf_matrix = confusion_matrix(y_test, y_pred)
recall = np.diag(cnf_matrix) / np.sum(cnf_matrix, axis = 1)
precision = np.diag(cnf_matrix) / np.sum(cnf_matrix, axis = 0)

Confusion Matrix:

cnf_matrix

Output:

array([[63, 61],
       [52, 74]], dtype=int64)

Precision:

#Precision Score
precision

Output:

array([0.55, 0.55])

Recall Score:

#Recall Score
recall

Output:

array([0.51, 0.59])


Exploratory Data Analysis

#EDA(Exploratory Data Analysis)
#ploting Graph of co-rrelation
fig = plt.figure(figsize=(10,5))
sns.heatmap(df_train.corr())

Output:











Box Plot

#Box Plot between ID & Employment_Period
#Here Both attribute(ID & Employment_period_) is associated to each other
sns.boxplot(x=df_train['Employment_period_'],y=df_train['ID'] )

Output:












# visualize frequency distribution of `Gender` variable
f, ax = plt.subplots(figsize=(9, 7))
ax = sns.countplot(x="Gender_", data=df_train, palette="Set1")
ax.set_title("Frequency distribution of Gender variable")
ax.set_xticklabels(df_train.Gender_.value_counts().index, rotation=30)
plt.show()

Output:















Line Chart

#Bar Plot(Here we choose some records of daset due to show visible plots)
df_train_plot = df_train.iloc[:18]
df_train_plot.plot(x= "ID", y= "Employment_period_", kind="bar")

Output:















If you need any other help related to machine learning then send your requirement details at realcode4you@gmail.com and get instant help.

Comments


bottom of page